Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.14.496062

ABSTRACT

Background: HIV infection dysregulates the B cell compartment, affecting memory B cell formation and the antibody response to infection and vaccination. Understanding the B cell response to SARS-CoV-2 in people living with HIV (PLWH) may explain the increased morbidity, reduced vaccine efficacy, reduced clearance, and intra-host evolution of SARS-CoV-2 observed in some HIV-1 coinfections. Methods: We compared B cell responses to COVID-19 in PLWH and HIV negative (HIV-ve) patients in a cohort recruited in Durban, South Africa, during the first pandemic wave in July 2020 using detailed flow cytometry phenotyping of longitudinal samples with markers of B cell maturation, homing and regulatory features. Results: This revealed a coordinated B cell response to COVID-19 that differed significantly between HIV-ve and PLWH. Memory B cells in PLWH displayed evidence of reduced germinal center (GC) activity, homing capacity and class-switching responses, with increased PD-L1 expression, and decreased Tfh frequency. This was mirrored by increased extrafollicular (EF) activity, with dynamic changes in activated double negative (DN2) and activated naive B cells, which correlated with anti-RBD-titres in these individuals. An elevated SARS-CoV-2 specific EF response in PLWH was confirmed using viral spike and RBD bait proteins. Conclusions: Despite similar disease severity, these trends were highest in participants with uncontrolled HIV, implicating HIV in driving these changes. EF B cell responses are rapid but give rise to lower affinity antibodies, less durable long-term memory, and reduced capacity to adapt to new variants. Further work is needed to determine the long-term effects of HIV on SARS-CoV-2 immunity, particularly as new variants emerge.


Subject(s)
COVID-19 , Coinfection , HIV Infections
2.
authorea preprints; 2021.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.163251349.96835693.v1

ABSTRACT

Therapeutic proteins, including monoclonal antibodies, are typically manufactured using clonally-derived, stable host cell lines, since consistent and predictable cell culture performance is highly desirable. However, selecting and preparing banks of stable clones takes considerable time, which inevitably extends overall development timelines for new therapeutics by delaying the start of subsequent activities, such as the scale-up of manufacturing processes. In the context of the COVID-19 pandemic, with its intense pressure for accelerated development strategies, we used a novel transposon-based Leap-In Transposase® system to rapidly generate high-titer stable pools and then used them directly for large scale-manufacturing of an anti-SARS-CoV2 monoclonal antibody under cGMP. We performed the safety testing of our non-clonal cell bank, then used it to produce material at a 200L-scale for pre-clinical safety studies and formulation development work, and thereafter at 2000L scale for supply of material for a Phase 1 clinical trial. Testing demonstrated the comparability of critical product qualities between the two scales and, more importantly, that our final clinical trial product met all pre-set product quality specifications. The above expediated approach provided clinically-ready material within 4.5 months, in comparison to 12-14 months for production of clinical trial material via the conventional approach.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.15.435309

ABSTRACT

The potential emergence of SARS-CoV-2 Spike (S) escape mutants is a threat to reduce the efficacy of existing vaccines and neutralizing antibody (nAb) therapies. An understanding of the antibody/S escape mutations landscape is urgently needed to preemptively address this threat. Here we describe a rapid method to identify escape mutants for nAbs targeting the S receptor binding site. We identified escape mutants for five nAbs, including three from the public germline class VH3-53 elicited by natural COVID-19 infection. Escape mutations predominantly mapped to the periphery of the ACE2 recognition site on the RBD with K417, D420, Y421, F486, and Q493 as notable hotspots. We provide libraries, methods, and software as an openly available community resource to accelerate new therapeutic strategies against SARS-CoV-2.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
4.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-134388.v1

ABSTRACT

Effective tools to monitor SARS-CoV-2 transmission and humoral immune responses are highly needed. Protective humoral immunity involves neutralizing antibodies and will be a hallmark for the evaluation of a vaccine response efficacy. Here we present a sensitive, fast and simple neutralization ELISA method to determine the levels of antibody-mediated virus neutralization. We can show that it is strongly correlated with the more elaborate plaque reduction neutralization test (PRNT) (ρ = 0.9231, p < 0.0001). Furthermore, we present pre-clinical vaccine models using recombinant receptor binding domain (RBD) and full-length spike antigen as immunogens showing a profound antibody neutralization capacity that exceeds the highest neutralization titers from convalescent individuals. Using a panel of novel high-affinity murine monoclonal antibodies (mAbs) we also show that majority of the RBD-raised mAbs have inhibitory properties while only a few of the spike-raised mAbs do. In conclusion, the ELISA-based viral neutralization test offers a time- and cost-effective alternative to the PRNT. The immunization results indicate that vaccine strategies focused only on the RBD region may have major advantages over those based on the full spike sequence.

SELECTION OF CITATIONS
SEARCH DETAIL